Открытие генома. Проект по расшифровке генома человека

Популярным способом оформления интерьера является плетение корзин из газетных трубочек: несложное занятие позволит создать настоящие творения искусства.

Плетение корзин подразумевает использование веревочной техники, с ее помощью можно создать красивые изделия для домашнего декора. В таких корзинах удобно хранить нитки для вязания, предметы рукоделия и другие принадлежности. Особой прочностью готовое лукошко не отличается, поэтому помещать в него предметы с большим весом не стоит.

Совет

Корзина из газеты хорошо подойдет для хранения декоративных фруктов на кухне : она больше служит интерьерным предметом, чем средством для переноски вещей.

Чтобы самостоятельно изготовить корзину своими руками в домашних условиях, можно воспользоваться мастер-классом для начинающих рукодельниц. Все, что потребуется – подготовить необходимые материалы и следовать предложенной пошаговой инструкции с фото. Процесс настолько увлекательный, что позволит задействовать даже детей возрастом от 7 лет.

Для работы понадобятся:

Приступаем к плетению ручки.

  • Для этого необходимо оставить по 3 трубочки с противоположных сторон корзины и оплести их.
  • Плетение необходимо осуществлять сразу с двух сторон изделия, постепенно сужая его к центру корзины.
  • На верхушке концы соединяются скотчем и маскируются под основу ручки.
  • Конечным этапом считается отделка изделия: смешайте немного акриловой белой краски, воды и клея и пройдитесь данным составом по периметру стенок.
  • Также необходимо закрасить дно изделия. Чтобы корзина высохла, переверните ее вверх дном и оставьте на несколько часов.

Конечное декорирование готового изделия происходит по желанию фантазии. Не забудьте вскрыть заготовку лаком для надежности соединений. Украсьте корзинку лентами, декоративными цветами, стразами или с помощью техники декупаж: шедевр порадует взгляд и подарит отличное настроение.

Плетение ручки

Одно из главных деталей корзинки является качественная ручка, ведь она пригодится, чтобы перенести изделия с места на место. Ручка должна быть плотной и прочной, ее можно украсить по желанию: сделать оплетку лентой, наклеить искусственные камни и стразы, а также просто разукрасить цветным акрилом. Изготовить ручку можно несколькими способами:

  • ажурным плетением;
  • косичкой;
  • веревочным способом.

В данном мастер-классе будет рассмотрено изготовление надежной и красивой ручки для корзины в технике плетения косички. С первого взгляда, кажется, что методика сложная и не поддается объяснению, однако выполнив пошаговые действия уже через 1 час можно наслаждаться готовой плетеной ручкой.

Плетение крепкой ручки

Детальный мастер-класс

Для работы потребуется 6 длинных газетных трубочек по длине ручки, цветные заготовки для оплетения каркаса, а также скрутки для плетения самой косы.

Приступаем к работе пошагово:

  • Газетные свертки в количестве 6 штук складываем друг к другу вместе и обматываем их цветными заготовками трубочек. Делать это легко: достаточно начать с края заготовок, постепенно обматывая их по всему периметру в один плотный пучок.
  • Когда основа ручки готова, приступаем к креплению дополнительных 4 трубочек для оформления косички. Для этого у самого основания ручки прикладываем 4 трубочки разного или одного цвета и немного приматываем их к заготовке с помощью свертки.
  • Начинаем плести косичку: сначала отгибаем две боковые палочки в стороны, а две средние загибаем на себя. После этого осуществляем плетение согласно рисунку на фото ниже.
  • Когда трубочка заканчивается, вставляем в нее новую, смачивая соединение клеем. Продолжаем плетение до тех пор, пока коса не покроет все основание ручки. Готовую ручку можно закрепить на корзине любым способом: лучше всего это сделать веревочной техникой.

Как сделать крышку?

Если корзина плетется открытой, то для нее достаточно изготовить ручки, и она будет готова. Когда предполагается изготовление конструкции с крышкой, то верхнюю часть изделия плетут отдельно. Чтобы самостоятельно изготовить крышку, можно воспользоваться несложным мастер-классом для начинающих.

Совет

Если хочется получить более узорную крышку, стоит выбирать те мастер-классы, которые основаны на ажурном или шахматном плетении – тогда на поверхности будет четко виднеться рисунок.

Для работы подготовьте 2 круга картона, по диаметру соответствующих готовой корзинке. Круг можно сразу задекорировать: выполнить декупаж, разукрасить акрилом или обтянуть тканью. Также потребуется клей ПВА, много газетных трубочек одного или нескольких цветов и лак.

Приступаем к процессу создания простой, но красивой крышки:

  • Два круга картона необходимо склеить между собой, предварительно разместив по окружности, лучи газетных скруток.
  • Плетение выполняется в веревочной технике или по наслоению. Четыре основных прутика вставляются через одну лучевую скрутку и начинается оплетение круга из картона.
  • Используется сразу все 4 прутика: сначала их заводят поверх газетной трубочки, потом проводят за следующей трубочкой. В итоге получается красивая кайма по контуру картона. Так оплетается весь круг по диаметру корзины.
  • Чтобы сделать бортики крышки, заготовку прикладывают на корзину и загибают лучи скруток вниз путем загиба стойки за стойку. Плетение продолжается в указанной выше технике. Концы отрезают и загибают внутрь, подклеивая.

Готовая крышка должна высохнуть, потом ее можно декорировать на свой лад.

Способы плетения корзин

Широкая популярность изготовления красивых корзинок из газетных трубочек спровоцировала развитие новых методик. Если ранее сплести корзинку можно было только методом, указанным выше, то современные мастерицы не сидят на месте.

Они придумывают новые способы переплетения заготовок, а также различные схематичные узоры. Чтобы подробнее узнать про каждый из видов плетения, предлагаем рассмотреть сводную таблицу с описанием методов.

Техника Описание Где применяется?
Скручивание по спирали Методика считается одной из простых, судя по отзывам рукодельниц, справиться с ней сможет даже школьник. Суть способа заключается в постепенном наращивании высоты изделия за счет кругового переплетения трубочек. Каждая новая заготовка накладывается на предыдущую по спирали. Используется для создания высоких корзин декоративного назначения, а также привлекательных ваз необычной формы. С помощью данной техники легко сделать стильный предмет декора для интерьера.
Послойная Методика подразумевает изготовление корзины сразу из нескольких трубочек. Для удобства плетения сначала выполняют несколько рядов веревочной техникой, вставляют в опорные отверстия дополнительные трубочки и начинают оплетать стенки по кругу каждой трубочкой одновременно. Применяется для создания корзин различной формы, а также для оформления узоров на поверхности изделий. Стоит отметить, что стойки должны быть на порядок прочнее самих заготовок для оплетения.
Веревочная Данный способ плетения был рассмотрен в мастер-классе выше, где пошагово разобрано руководство к созданию оригинальной, но простой корзины для начинающих. Методика плетения используется для создания несложных изделий круглого и квадратного типа. Такой способ подойдет для обучения начинающих мастериц.
Плетение по спирали Не стоит путать методико со скручиванием по спирали – они принципиально различаются. Данный способ подразумевает плетение под углом Спиральное плетение подходит для изготовления небольших и высоких предметов, например узких корзин, стаканов, ваз.
Косичка Различают 2 вида данного способа – кромочный и накладной. Первый вариант используется для плетения стойки против часовой стрелки, при этом трубочки выводят то наружу, то вовнутрь. Накладная методика подразумевает применение сразу нескольких скруток, оплетаемых с краем. Корзины, изготовленные таким плетением, выглядят более изящными. Фактура рисунка напоминает настоящую корзину из ивовой лозы.
Ажурная Узнать такое плетение несложно – внешне оно выглядит как кружево. Оно состоит из отверстий и узоров. Техника является синтезом простых и сложных методик. Оригинальные корзины из ажурного плетения бывают открытыми или закрытыми. Они хорошо подходят для презентации подарка имениннику в качестве упаковочной коробки.

Рассмотренные способы плетения помогут лучше понять, как правильно изготовить корзину своими руками. Начинающим лучше использовать веревочную технику или спиральное скручивание, более подробные описания данных техник будут представлены по ходу материала.

Корзины для белья

Главным преимущестквом работы в данной технике есть ее практичная сторона: научившись плести корзины из подручного материала, можно с легкостью создавать предметы для домашнего обихода.

Одним из таких полезных приспособлений является корзина для белья – работа выполняется просто, сложности кроются лишь в размерах самого изделия. Чтобы самостоятельно сплести корзину для белья из газетных скруток, запаситесь терпением и необходимыми материалами.

Подготовьте такие материалы и инструменты:

  • плотный картон, некоторые рукодельницы используют гофрированный картон;
  • обои или цветная бумага для оклейки дна;
  • трубочки из бумаги, предварительно окрашенные в необходимый цвет и покрытые морилкой;
  • бесцветный лак;
  • клей ПВА;
  • ткань для вкладыша на основание.

Также потребуются прищепки, чтобы закрепить дно на время его высыхания и тяжелые предметы, например гиря или стопка книг. Не лишней станет коробка, по размеру которой будет происходить оплетение корзины. Она добавит дну устойчивости и сделает корзину правильной формы.

Чтобы самостоятельно смастерить красивую корзину для фруктов, подготовьте газетные трубочки в количестве 310 штук – их длина составляет 27 см. Трубочки рекомендуется предварительно окрасить таким составом: на пол литра воды взять 2 ст. л. акрилового лака и смешать с колером оттенка. Обработать все трубочки и приступать к пошаговой работе.

Этап Описание
Формирование дна Дно выполняется в веревочной технике с применением креста для основы. Возьмите 12 трубочек, разделите их на группы по 3 в каждой и склейте крестовину.
Плетение дна Сплетите в указанной технике 6 рядов, оплетая по 3 трубочки сразу, после чего начинайте оплетать по 1 свертке. Так необходимо плести до тех пор, пока не получится дно нужного диаметра.
Формирование бортов Чтобы сделать подъемы для плетения бортов конструкции, необходимо вставить в каждое отверстие с палочкой еще по 3 трубочки.
Плетение бортов Надев дно на круглый предмет, например деревянную миску, можно продолжать работу. Здесь уже можно плести борты с использованием послойной техники: она выполняется в 2-4 прута и будет гораздо надежнее веревочной методики.
Создание ажурности Чтобы корзина получилась изящной, можно создать рисунок: по центру плетения просто перекрестить соседние прутья, имитируя ромбы. Каждое соединение прижать прищепкой и вплести новые прутья для дальнейшей работы.
Формирование ручки Когда основная работа готова, приступаем к созданию ручки: с боков изделия вставляем дополнительные прутья и создаем ручку, согласно мастер-классу, указанному выше.
Декор Отделываем конструкцию по своему желанию: красим разноцветными пигментами, делаем вставки из ткани.

Корзина для фруктов

Детальный мастер-класс

Такой корзинке не понадобится крышка, ведь она предназначена для хранения фруктов. Ручку изделия можно эффектно украсить розой из фоамирана.

Плетение корзин разной формы

Для разных нужд используются корзины различной формы. Например, для хранения белья пригодится прямоугольная высокая корзина, для хранения швейных принадлежностей подойдет квадратная или круглая, а для декора помещения на праздники уместной станет овальная конструкция. Подробные мастер-классы по изготовлению каждой формы представлены ниже.

Квадратная корзинка

Такой тип изделия отлично подойдет в качестве настольной хлебницы. Достаточно поместить внутрь вкладыш из ткани и красивая хлебница для подачи на стол гостям – готова. Работа будет основана на применении специального приспособления, помогающего быстрее сплести основание изделия.

Плетение квадратной корзины

Детальный мастер-класс

Чтобы сделать такое вспомогательное устройство достаточно взять лист картона, согнуть его пополам вдоль и через 2 см от сгиба дыроколом проделать отверстия для трубочек. Также нужно подготовить большое количество бумажных или газетных свертков.

  • Палочки для основания вставляем в отверстия картона так, чтобы большая их часть была ближе к работе.
  • Начинаем оплетать дно: берем длинную трубочку и вставляем ее рядом с картоном, дальше работаем в технике веревочного плетения. Когда достигаем нужного периметра квадрата, дно заканчиваем.
  • Для формирования и подъема стенок вставляем новые лучины по периметру квадрата: сгибаем скрутку пополам и продеваем в отверстие, захватывая ближайшую трубочку. Фиксируем места крепления скотчем и прищепками.
  • Начинаем оплетать стенки до того момента, пока не получим высоту. Для легкости работы надеваем конструкцию на квадратную коробку.

Когда работа окончена, к ней можно приделать ручку или сплести дополнительно крышку. Такая корзинка не только послужит хлебницей, но станет хорошим вариантом упаковочной коробки.

Овальная корзинка

Изделие овального типа считается вторым по популярности после круглой корзины . Такая форма более вместительная и предполагает использование в качестве шкатулки, упаковочной коробки или просто для хранения подручных принадлежностей. Само изделие украшается:

  • цветами;
  • лентами;
  • нитками;
  • разнообразным текстилем.

Для работы нужны все те же материалы:

  • газетные трубочки из полосок размером 11х28 см;
  • спица для накручивания;
  • клей;
  • морилка;
  • декор.

Первым этапом традиционно считается изготовление крестовины: в прямоугольной конструкции она выглядит и делается по-другому. Так как используется плетение веревки в 2 трубочки, то поперек необходимо продеть двойные скрутки.

Первые два ряда проплетаются по одной и по две трубочки, остальные девять рядов плетутся по одной. В середине работы необходимо добавить дополнительные стойки по количеству, равному числу основным стойкам. После этого делается переход к бортикам. Далее плетутся борты, через 5 рядов необходимо сделать отверстия для ленты – по желанию их можно не делать.

Чтобы отверстия были ровными, их выравнивают с помощью плотной картонки. Оставшуюся часть изделия оплетают привычным методом.

Готовая корзинка станет идеальным подарком для женщины, занимающейся рукоделием. Также в изделие удобно положить носовые платочки на хранение или любой другой текстиль. Выполнив конструкцию, она станет хорошим подарком для молодого поколения.

Ажурная корзина своими руками

Одним из самых красивых видов корзин считается ажурная разновидность. Чтобы сплести изделие можно воспользоваться сложными техниками, создавая плавные переходы от одного узора к другому.

Если же сложности не для нас, то рекомендуем воспользоваться предложенным ниже мастер-классом, который научит легко и быстро сделать ажурное изделие.

Пошаговая инструкция

  • Подготовим материалы: будут необходимы газетные трубочки – как их плести, уже известно. Количество трубочек зависит от их длины, а также от высоты корзины и ее диаметра. Для работы лучше брать сразу 2 оттенка палочек: одним из них будут выполняться ажурные узоры в виде сердец.
  • Приступаем к изготовлению дна: оно плетется так же, как в мастер-классе по круглой корзине. Возьмите 4 пары трубочек и склейте их в крест, промазав основание посередине клеем ПВА. Первый ряд донышка будет оплетаться по 2 трубочки сразу, начиная со второго ряда оплетать необходимо по 1 палочке.
  • Согласно данной схеме плетется все дно до тех пор, пока не образуется нужный размер корзины. Дальше трубочки необходимо поднять вверх – сделать это можно вручную или использовать круглую посуду для более ровного подъема. Плетение первых двух рядов будет происходить по технике прямая и обратная «елочка», когда первая трубочка заходит за свертку, а вторая прокладывается перед ней.
  • После оплетения первых двух рядов боковин вводится палочка другого цвета. С ее помощью оплетают еще некоторое количество рядов, например 2 ряда. Далее предлагается изготовить ажурный узор.
  • Сделать ажурный узор можно любой формы, в данном мастер-классе используется сердечко. Его сделать очень легко: газетная свертка скручивается по спирали, образуя овал. Каждая скрутка вставляется в отверстие корзины, получается сердце: верхушка и низ фигурки приклеивается ПВА к опорам.
  • Далее плетение продолжается: сделать необходимо столько рядов, сколько нужно для получения желаемой высоты. Концы трубочек обрезаются, а хвостики прячутся под другие свертки, все фиксируется клеем. В итоге получается изящная корзина с ажурными узорами.

Проект «Геном человека» является наиболее амбициозной биологической исследовательской программой за всю историю науки. Знание генома человека внесет неоценимый вклад в развитие медицины и биологии человека. Исследования человеческого генома так же необходимо человечеству, как когда-то было необходимо знание человеческой анатомии. Осознание этого пришло в 1980-х, и это привело к тому, что появился проект «Геном человека». В 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А. А. Баев (1904–1994). С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO). Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO.

Итак, прошло 10 лет с того времени, когда проект «Геном человека» был завершен. Есть повод вспомнить, как это было...

В 1990 г. при поддержке министерства энергетики США, а также Великобритании, Франции, Японии, Китая и Германии, был запущен этот трехмиллиардный проект. Возглавил его д-р Фрэнсис Коллинз, глава . Целями проекта являлись:

  • идентификация 20 000–25 000 генов ДНК;
  • определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
  • усовершенствование приборов для анализа данных;
  • внедрение новейших технологий в область частного использования;
  • исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.

В 1998 г. аналогичный проект был запущен д-ром Крейгом Вентером и его фирмой «Celera Genomics ». Д-р Вентер поставил перед своей командой задачу более быстрого и дешевого секвенирования человеческого генома (в отличие от трехмиллиардного международного проекта, бюджет проекта д-ра Вентера ограничивался 300 млн долл.). Кроме того, фирма «Celera Genomics » не собиралась открывать доступ к своим результатам.

6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.

Тогда умы ученых были взбудоражены необыкновенными возможностями: новые, действующие на генетическом уровне лекарства, а значит, не за горами создание «персональной медицины», настроенной точно под генетический характер каждого отдельно взятого человека. Существовали, конечно, и опасения, что может быть создано генетически зависимое общество, в котором людей буду делить на высшие и низшие классы по их ДНК и соответственно ограничивать их возможности. Но все же была надежда, что этот проект окажется столь же прибыльным, сколь и Интернет.

И вдруг все затихло... надежды не оправдались... казалось, что 3 млрд долл., вложенных в эту затею, выброшены на ветер.

Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.

В результате исполнения проекта «Геном человека» был создан открытый банк генокода. Общедоступность полученной информации позволила многим исследователям ускорить свою работу. Ф. Коллинз привел в качестве иллюстрации такой пример: «Поиск гена фиброзно-кистозной дегенерации был успешно завершен в 1989 г., что стало результатом нескольких лет исследований моей лаборатории и еще нескольких других и стоило США около 50 млн долл. Сейчас это способен сделать смышленый выпускник университета за несколько дней, и все, что ему понадобится, - это Интернет, несколько недорогих реактивов, термоциклический аппарат для увеличения специфичности сегментов ДНК и доступ к ДНК-секвенатору, читающему ее по световым сигналам».

Еще один важный результат проекта - дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens , какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.

Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.

Вскоре после расшифровки большей части генокода в 2003 г., ученые обнаружили, что существует гораздо меньше генов, чем они ожидали, но впоследствии убедились в противоположном. Традиционно ген определяли как участок ДНК, который кодирует белок. Однако, расшифровывая генокод, ученые выяснили, что 98,5% участков ДНК не кодируют белки, и назвали эту часть ДНК «бесполезной». И выяснилось, что эти 98,5% участков ДНК имеют едва ли не большее значение: именно эта часть ДНК отвечает за ее функционирование. Например, определенные участки ДНК содержат инструкции для получения похожих на ДНК, но небелковых молекул, так называемых двухцепочечных РНК. Эти молекулы являются частью молекулярно-генетического механизма, контролирующего активность гена (РНК-интерференция). Некоторые двухцепочечные РНК могут подавлять гены, препятствуя синтезу их белковых продуктов. Таким образом, если данные участки ДНК также считать генами, то их количество удвоится. В итоге исследования изменилось само представление о генах, и сейчас ученые считают, что ген - это единица наследственности, которую нельзя понимать как просто участок ДНК, кодирующий белки.

Можно сказать, что химический состав клетки - ее «хард», а информация, закодированная в ДНК, - предварительно загруженный «софт». Никто раньше и не предполагал, что клетка является чем-то большим, чем просто совокупностью составных частей, и что для ее построения недостаточно закодированной в ДНК информации, что столь же важным является процесс саморегулирования генома - и путем сообщения между соседними генами, и путем воздействия других молекул клетки.

Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.

Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.

Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.

Наконец, и «персональная медицина» теперь кажется уже более реальной задачей. Д-р Уиллс выразил надежду, что лечение заболеваний путем замены поврежденного участка ДНК нормальным станет возможным уже в следующее десятилетие. Сейчас проблемой, препятствующей развитию такого метода лечения, является то, что ученые не умеют доставлять ген в клетку. Пока единственный известный способ доставки - заражение животного вирусом с необходимыми генами, но это опасный вариант. Однако д-р Уиллс предполагает, что в скором времени в этом направлении будет совершен прорыв.

Сегодня уже существуют простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушение свертываемости крови, кистозный фиброз, заболевания печени и др. Такие заболевания, как рак, болезнь Альцгеймера, диабет, как было выяснено, связаны не с общими для всех, а с огромным количеством редких, практически индивидуальных мутаций (причем не в одном гене, а в нескольких; например, мышечную дистрофию Шарко-Мари-Тут может вызвать мутация 39 генов), в результате чего эти болезни трудно поддаются диагностике и воздействию медицинских препаратов. Именно это открытие является одним из камней преткновения «персональной медицины», поскольку, прочитав генокод человека, пока невозможно точно определить состояние его здоровья. Исследуя генокоды разных людей, ученые были разочарованы результатом. Около 2000 участков ДНК человека статистически относилось к «болезненным», которые при этом не всегда относились к работающим генам, т. е. не представляли угрозы. Похоже, что эволюция избавляется от мутаций, вызывающих болезнь, до того, как они станут общими.

Проводя исследования, группа ученых в Сиэтле обнаружила, что из всего человеческого генокода лишь 60 генов претерпевают спонтанную мутацию каждое поколение. При этом мутировавшие гены могут вызвать различные заболевания. Так, если у каждого из родителей было по одному «испорченному» и одному «неиспорченному» гену, то у детей болезнь может и не проявиться или проявится в очень слабой форме, если они получат один «испорченный» и один «неиспорченный» ген, но если ребенок унаследует оба «испорченных» гена, то это может привести к болезни. К тому же, поняв, что общечеловеческие болезни вызываются индивидуальным мутациями, ученые пришли к выводу, что необходимо исследовать полностью весь генокод человека, а не его отдельные участки.

Несмотря на все затруднения, уже созданы первые генетические лекарства против рака, которые блокируют эффекты генетических отклонений, приводящих к росту опухолей. Также недавно было одобрено лекарство компании «Amgen » от остеопороза, которое основывается на том, что болезнь вызывается гиперактивностью определенного гена. Последнее достижение - проведение анализа биологических жидкостей на присутствие мутации определенного гена для диагностики рака толстой кишки. Такой тест позволит избавить людей от неприятной процедуры колоноскопии.

Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.

Закон Мура говорит о том, что компьютеры увеличивают свою мощность вдвое примерно каждые два года. Таким образом, за последнее десятилетие их мощность возросла более чем в 30 раз при постоянно снижающейся цене. В геномике пока нет имени для аналогичного закона, но его следовало бы назвать законом Эрика Лэндера - по имени главы Broad Institute (Cambridge , Massachusetts , крупнейший американский центр, занимающийся расшифровкой ДНК). Он подсчитал, что по сравнению с прошлым десятилетием цена расшифровки ДНК снизилась на сотни тысяч долларов. При расшифровке последовательности геномов в International Human Genome Sequencing Consortium использовали метод, разработанный еще в 1975 г. Ф. Сенджером, что заняло 13 лет и стоило 3 млрд долл. А значит, расшифровка генетического кода была под силу только мощным компаниям или центрам по исследованию генетической последовательности. Сейчас, используя последние устройства для расшифровки от фирмы «Illumina » (San Diego , California ), человеческий геном может быть прочитан за 8 дней, и стоить это будет около 10 тыс. долл. Но и это не предел. Другая калифорнийская фирма, «Pacific Biosciences» и з Менло Парка, разработала способы, позволяющие прочитать геном всего с одной молекулы ДНК. Вполне возможно, что скоро расшифровка генома будет занимать минут 15 и стоить менее 1000 долл. Аналогичные разработки существуют и в «Oxford Nanopore Technologies » (Великобритания). Раньше фирмы использовали решетки проб ДНК (ДНК-чипы) и искали определенные генетические символы - SNP. Сейчас известно несколько десятков таких символов, но есть основания предполагать, что среди трех миллиардов «букв» генетического кода их гораздо больше.

До недавнего времени полностью было расшифровано всего несколько генокодов (в проекте «Геном человека» были использованы кусочки генокода множества людей, а затем собраны в единое целое). Среди них генокоды К. Вентера, Дж. Уотсона, д-ра Ст. Куэйка, двух корейцев, китайца, африканца, а также больного лейкемией, национальность которого ныне уже трудно установить. Теперь, с постепенным усовершенствованием техники чтения последовательностей генов, станет возможным расшифровка генокода все большего и большего числа людей. В будущем свой генокод сможет прочитать любой человек.

Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.

На настоящий момент в США ведутся споры по поводу патентования «расшифрованных» генов. Однако многие исследователи считают, что патентование генов станет препятствием для развития науки. Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных «портретов» людей, что, в частности, позволит лучше лечить болезни, но и определить различия между популяциями, выявлять географические районы повышенного «генетического» риска, что поможет давать четкие рекомендации о необходимости очистки территорий от загрязнения и выявлять производства, на которых есть большая опасность поражения геномов персонала.

SNP - одиночный генетический символ, который меняется от человека к человеку. Его открыли специалисты «International HapMap Project », изучая такую мутацию генокода, как однонуклеотидный полиморфизм. Целью проекта по картированию участков ДНК, различных для разных этнических групп, был поиск уязвимости этих групп к отдельным заболеваниям и возможностей их преодоления. Эти исследования могут также подсказать, как человеческие популяции адаптировались к различным заболеваниям.

В 1988 году учеными была открыта международная программа по расшифровке генома человека. Проект “геном человека” официально начался в 1990 году в котором опубликованы планы на первые пять лет и последующие 15 лет проекта в котором приняла участие и Россия. Ученые России описывали 3-ю, 13-ю и 19-ю из 46 хромосом человека.

1990 – международная программа геном человека начинается

Значение исследования генетического кода человека

Многие медицинские сообщества многих стран уже давно проявляли интерес и считают, что расшифровка генома человека важна ради прогресса медицины и выявления мутаций при ядерном облучении.

Целями проекта стало:

  • составление карты человеческого генома и определение всего 3,2 миллиарда букв
  • картирование и секвенирование геномов других организмов, если это будет полезным для изучения биологии
  • разработка технологий для анализа ДНК и изучения социальных, этических и правовых последствий геномных исследований.

Начало клонирования организмов

Первый секвенированный геном

В 1995 году, чтобы продемонстрировать новые стратегии последовательности американский биолог Дж. Крейг Вентер опубликовал первый полностью секвенированный геном самовоспроизводящегося свободного живого организма – Гемофильной палочки.

Известный как грипп гемофильная палочка – это бактерия, которая может вызвать менингит уха и респираторные инфекции у детей. До этого прорыва, ученым только удалось секвенировать участок ДНК некоторых вирусов, которые примерно в десять раз короче, чем грипп гемофильная палочка.

Реализация проекта заняла около года и имела выдающееся достижение. Его успех доказал, что метод может быть применен быстро и качественно для определения генома в целом, подготавливая почву для будущих открытий.

1995 – гемофильная инфекция -это первый секвенированный геном бактерии

В марте 2000 года, ученые из ряда лабораторий успешно расшифровали генетический состав фруктовой мухи. Совместные усилия будут иметь серьезные последствия для секвенирования генома человека, как молекулярная биология и развитие имеет много общего с млекопитающими.

В ходе своих исследований ученые обнаружили, что каждый ячейка дрозофилы содержит 13 601 участков ДНК, что делает её самым большим и сложным организмом декодируемым в то время. Однако, напротив, человеческие клетки содержат 70 000 участков ДНК. В то время как проект “геном человека” еще двигался, чтобы достичь своей конечной цели, это стало важной вехой на этом пути.

2000 – генетический код дрозофилы декодируется

В 2002 году ученые реализовали следующий большой шаг и расшифровали геном первого млекопитающего – мыши. Достижение позволило им сравнить, в первый раз, геном человека с другим млекопитающим.

Удивительно, выяснилось, что 90% кода мыши могут соответствовать с соответствующим местом на расшифровке генома человека. Как мышь и геном человека содержится около 30 000 белок-кодирующих участков ДНК. Эти открытия выведены впервые, насколько тесно млекопитающих были генетически связаны.

Первое клонирование животных

Всемирно известная овечка Долли была первым млекопитающим, клонированным из взрослой клетки. Подвиг был новаторским в то время как животные, такие как коровы были ранее клонированы из клеток эмбриона. Долли показала, что даже ДНК все еще может быть использован для создания всего организма.

Долли была создана учеными Рослинского института в Шотландии, из вымени клетки шестилетней белой овцы. Ученые нашли способ перепрограммировать клетки, которые затем вводили в яйцеклетку из которой её родные ядра были удалены. Затем яйцо было культивировано до стадии, прежде чем быть имплантировано в суррогатную мать.

Клонирование животных из взрослых клеток – это сложный процесс, и из 277 попыток только Долли была единственным ягненком, чтобы выжить. Она продолжала жить в безмятежном существовании в Рослинском институте и была способна производить нормальное потомство. После ее смерти (её усыпили), стала чучелом и выставлена на показ.

1996 – клонирование животных: овечка Долли

История создания генофонда человека

Расшифровка генома человека не была бы успешной и её невозможно было бы осуществить в рамках отдельной страны и без общей координации ученых. Поэтому в 1996 году руководители проекта “геном человека” встретились на Бермудских островах, и решили, что данные о последовательности генома должны находиться в свободном открытом доступе.

Известное соглашение как “Бермудские принципы”, было разработано, чтобы гарантировать, что информационные последовательности приведут как можно быстрее к достижениям в области здравоохранения и научных исследований.

Для того, чтобы координировать процесс, было также решено, что крупные центры секвенирования информируют организацию генома человека о каких-либо намерениях о последовательности расшифровки генома человека.

1996 – Бермудские принципы проекта «геном человека» упорядочили составление отдельных частей.

Декодирование первой хромосомы человека

В 1999 году Международная команда исследователей достигла важной вехи, когда они изучали в первый раз полный генетический код хромосом у человека. Хромосома содержит 33,5 миллиона “букв” или химических компонентов.

В то время непрерывный участок ДНК не был расшифрована и собран. Однако, это была только первая глава расшифровки генетического кода человека – остальное было еще впереди.

1999 – первая хромосома человека декодируется

Генофонд определен

История расшифровки генома человека завершилась в 2003 году, когда проект был завершен. Международный научно-исследовательский проект может быть описан как величайшее путешествие когда-либо сделанное – хоть и вовнутрь человека.

Ученые добились высокого качества последовательность всего генома человека. В 2001 году проект “геном человека” был опубликован в ‘черновике’, который включал последовательности 90% всех трех миллиардов пар оснований.

После этого ученые проводили второй этап проекта – завершающий этап. В течение этого времени, исследователи заполнили пробелы и устранили особенности ДНК в неоднозначных местах, пока они не завершили 99% описания ДНК в окончательной форме. Длина молекулы ДНК составляет 340 нанометров.

Эта окончательная форма содержит 2,85 миллиарда нуклеотидов, с прогнозируемыми темпами погрешность всего в 1 случае из 100 000 виртуализированных баз. Неоднозначности включают относительно небольшое количество белок-кодирующих генов (между 20 000 и 25 000) и там были похожие структуры с теми же функциями, представленные в разных видах.

Если учесть, что меньше чем за 200 лет назад, первооткрыватели, такие как Чарльз Дарвин только начинают подозревать, что характеристики могут передаваться по наследству, это же уму непостижимо, что ученым удалось найти методы .

ГЕНОМ ЧЕЛОВЕКА

Сенсационное научное достижение - расшифровку генома человека - по значимости сравнивают с расщеплением атома или раскрытием строения молекулы ДНК. Одно ясно: это открытие подняло науку на принципиально новый уровень познания.

Может быть, впервые в современной науке сложилась необычная ситуация. В работу над исключительно дорогостоящим и важным проектом включились, с одной стороны, индивидуальные исследователи, нашедшие себе мощных спонсоров, с другой стороны, учреждения и университеты, финансируемые правительствами нескольких стран. Первоначально в 1988 году средства на изучение генома человека выделило Министерство энергетики США. Одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор. В 1990 году Джеймс Уотсон в результате лоббирования конгресса США - добился вскоре выделения сразу сотни миллионов долларов на изучение генома человека. То была весомая добавка к бюджету Министерства здравоохранения. Оттуда деньги направлялись в ведение дирекции сети институтов, объединенных под общим названием - Национальные институты здоровья (МН). В составе МН появился новый институт - Национальный институт исследования генома человека, директором которого стал Фрэнсис Коллинз.

В мае 1992 года ведущий сотрудник МН Крэйг Вентер подал заявление об уходе. Он объявил о создании нового, частного исследовательского учреждения - Института геномных исследований, сокращенно ТИГР. Ученому удалось удивительно быстро развить и вырастить свое детище. Уже первоначальный капитал института составил семьдесят миллионов долларов, пожертвованных спонсорами. ТИГР объявили неприбыльным частным институтом, не использующим свои результаты для обогащения или торговли. Практически одновременно образовали компанию «Науки о геноме человека», которая должна была продвигать на рынок данные, получаемые сотрудниками ТИГРа.

В июне 1997 года Вентер начал новые преобразования. Он вывел ТИГР из связки с «Наукой» и в 1998 году организовал в Роквилле (штат Мэриленд) свою собственную коммерческую компанию, которую назвал «Силера джиномикс». Вентер стал ее президентом, оставшись главным научным руководителем ТИГРа. Последний возглавила его жена Клэйр Фрэйзер.

Как пишет В.Н. Сойфер, «Вентер оказался исключительно умельи руководителем. Он договорился с одной из крупных компаний m производству научного оборудования, что та предоставит в прокат ТИП 18–20 автоматических секвенаторов-роботов, которые в первый же год работы позволят довести размер секвенируемых последовательностей дс 60 миллионов оснований (одной пятой всего генома человека; такой же был важен и для компании - лучшей рекламы своей продукции представить трудно). Позже Вентер заключил аналогичный контракт поставке институту огромных систем усовершенствованных роботов для секвенирования протяженных кусков ДНК». В распоряжении Вентера оказался огромный парк компьютеров, который считают вторым по мощности в мире. Триста суперкомпьютеров стоимостью около 80 миллионов долларов круглосуточно обрабатывают огромные объемы данных.

В итоге работы по Проекту человеческого генотипа набрали небывалую скорость. Первоначально получить полную версию генотипа I обещали к 2010 году, потом предполагалось завершить работу в 2003 году. Результата удалось добиться уже в 2001-м!

Открывая независимый центр - Институт исследования генотипа, Вентер пообещал первым расшифровать человеческий генотип.

К 2001 году удалось получить последовательность двух миллиардов знаков генотипа. Причем на установление последовательности первого миллиарда ушло четыре года, а на второй миллиард - меньше четырех месяцев. Ускорение - результат применения высоких технологий, например роботов.

Команда Вентера использует метод, называемый пулеметная последовательность. Взрывным способом весь генотип разделяется на семьдесят миллионов фрагментов. Далее машиной выстраивается последовательность, а порядок генотипа обрабатывается суперкомпьютером, управляемым процессором мощностью в 1,3 триллиона операций в секунду.

Вентер доказал эффективность пулеметной последовательности, когда «Силера джиномикс» воспроизвела последовательность генотипа микроба ответственного за такие серьезные инфекции, как менингит, а также закончила расшифровку генотипа фруктовой мухи (120 миллионов знаков).

В 2001 году Международный консорциум, в который вошли помимо ведущего участника этого проекта - биотехнологической компании «Силера джиномикс», 16 организаций из Великобритании, США, Франции, Германии, Японии и Китая, обнародовали результаты колоссальной работы. Ученые определили, что генетическую программу молекулы ДНК составляют 3,2 миллиарда бесконечно повторяющихся четырех пар азотистых оснований аденина, тимина, цитозина и гуанина.

Самой большой неожиданностью стал тот факт, что количество генов в наследственной программе человека оказалось не 80-100 тысяч, как ожидалось, а лишь 30–40 тысяч.

Если сравнить с количеством генов дождевого червя (18 000) или плодовой мушки (13 000), то разница окажется не слишком велика! При этом у разных живых организмов выявлены сходные гены, что только подтверждает теорию молекулярной эвононии.

«Если кто-то думал, что основное отличие между биологическими видами определяется именно количеством генов, то он, скорее всего, ошибался», - подводит итог профессор Эрик Ландер, руководитель научных исследований по геному человека в Массачусетском технологическом институте США. А Вентер не без сарказма добавляет: «Всего нескольких сотен генов, которые есть в геноме человека, нет в геноме мыши». Таким образом, первоначальные представления о том, что человек является с биологической точки зрения сложнейшей структурой, ученые подтвердить не смогли.

«Работа человеческих генов, говорят они, оказалась намного сложнее, чем они предполагали, - пишет в журнале „Эхо планеты“ Елена Слепчук. - У нас за один и тот же признак, за одну и ту же болезнь отвечают не один, а несколько или даже группа генов. Впрочем, об этом генетики догадывались и раньше. Возможно, таким образом гены страхуют друг друга, а заодно и приобретают более широкое поле деятельности. Работу генов можно сравнить с действиями кукловодов, ведущих целый спектакль, виртуозно руководя послушными куклами и вводя по ходу действия все новые персонажи. Представим, что вместо ниточек идут генные команды на производство тех или иных пептидов, из которых впоследствии строится тело живого организма. По мнению молекулярных биологов, еще одна особенность человеческих генов состоит в том, что природа придала нам большее число так называемых генов-контролеров, которые следят за работой своих „собратьев“. Действительно, зачем без конца увеличивать штат работников, если поставленной цели можно достичь путем толкового менеджмента? Вот где пример для подражания нашим управленцам. Кстати, ученые Кембриджского университета уже запланировали специальное исследование, надеясь разобраться, каким образом такая сложная структура - человек - спокойно управляется столь небольшим количеством генов.

А вот чем мы кардинально отличаемся от всего живого мира, так это удивительным многообразием своих белков. Сколько их, не знает никто. Генетики полагают, что отдельные белковые компоненты могут смешиваться между собой, образуя различные сочетания, подобно тому, как смешения семи основных цветов создают мириады различных красок.

Биология вершится не на уровне генов, а на уровне белков, признают они. Из этого следует еще один важный вывод: не все в нашей жизни определяется генами, от окружения тоже многое зависит».

Другим сюрпризом, поставившим биологическую науку в тупик, стало наличие так называемой «молчащей» ДНК. И раньше было известно, что вдоль цепи ДНК есть участки, которые не выдают никакой информации для производства белков Генетики называли их «генетическим мусором». И вот оказалось, что такие участки занимают 95 процентов всей ДНК. Одни биологи выдвигают гипотезу, что именно в них скрыта эволюционная информация. Другие полагают, что на эти участки возложена важная роль управления генами.

Вентер считает, что расшифровка генома человека поможет лучше понять истинные причины многих заболеваний. Это открытие позволит в недалеком будущем устранять наследственные недуги, а также создавать новые лекарства. Новые средства лечения смогут «чинить» или заменять «плохие гены». При подобном индивидуальном подходе к каждому человеку удастся продлевать человеческую жизнь.

А вот мнение профессора Дэвида Альтшулера из Уайтхедского института биомедицинских исследований: «Нет двух одинаковых болезней и двух одинановых пациентов. Примерно половину этих различий можно объяснить именно особенностями генетического кода. И если мы поймем, что за информация в нем содержится, то сможем сравнить гены наших пациентов с генами идеального, „чистого“ гомо сапиенс и искать пути к лечению, что значительно повысит эффективность работы врача».

«Более скептически в этом отношении настроен Джон Сальстон из Кембриджа, - пишет в том же журнале Борис Зайцев, - считающий, что с определенными генами связано относительно немного заболеваний Подавляющее же их большинство, в том числе таких „главных убийц“, как сердечные, возникает при участии многих генов и белков, с одной стороны, и под влиянием окружающей среды - с другой. Из этого следует, что перспектива создания нового поколения лекарств, способных лечить болезни на генетическом уровне, отодвигается, считает ученый. Пока созданы препараты, воздействующие на 483 „биологические цели“ в организме. Необходимо значительно глубже проникнуть в основы жизни - понять, каким образом взаимодействуют гены для выработки почти 300 тысяч белков. Это, по прогнозам, потребует значительно больше времени, чем расшифровка самого генома…

…Наряду с блестящими возможностями, которые открывает новое достижение ученых, генетический прорыв может иметь серьезные правовые, этические и социальные последствия. Генетический тест, если его проводить, покажет все заболевания, к которым предрасположен человек. Не отразится ли это на отношениях больной - врач, если болезней все равно не избежать? А если такие данные попадут к страховым компаниям, не воспользуются ли они ими для „отлучения“ потенциальных больных от финансовой помощи? И получат ли работу люди, не имеющие „чистых“ генов? Тесты на эмбрионах могут привести к принудительным абортам у женщин, чей плод оказался с „плохими“ генами. Нельзя исключать и жестких попыток вообще запретить иметь потомство людям с генетическими аномалиями. Появление же у них детей сразу может поставить младенцев в разряд „генетических изгоев“».

Профессор генетики Дэвид Альтшулер категоричен: «Уже сейчас мы должны начать переговоры с правительствами и законодателями о принятии закона, защищающего граждан от „генной дискриминации“».

Введение……………………………………………………………..3

«Геном человека». Вехи проекта…………………..….…...…..4 Карты хромосом. Подходы к их составлению………..............6 Разработка новых технологий………………………….……....9

4. Результаты. Задачи на будущее……………………………….10

Заключение…………………………………………………………15

Список литературы………………………………………………..16

Введение.

Международный проект «Геном человека» был начат в 1988 г. под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн долларов, а частные компании - и того больше. В проекте задействованы несколько тысяч ученых более чем из 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.

Цель проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека. Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причины наследственных заболеваний и этим открыть пути к их лечению. В выполнении проекта задействовано несколько тысяч ученых, специализирующихся в биологии, химии, математике, физике и технике.

В 2000 году был выпущен рабочий черновик структуры генома, полный геном - в 2003, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения.

Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, в частности, Escherichia coli, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь.

«Геном человека». Вехи проекта.

В любой соматической клетке человека 23 пары хромосом. В каждой из них по одной молекуле ДНК. Длина всех 46 молекул почти 2 м.

У взрослого человека примерно 5х1013клеток, так что общая длина молекул ДНК в организме 1011км (почти в тысячу раз больше расстояния от Земли до Солнца). В молекулах ДНК одной клетки человека 3,2 млрд.пар нуклеотидов. Каждый нуклеотид состоит из углевода, фосфата и азотистого основания. Углеводы и фосфаты одинаковы во всех нуклеотидах, а азотистых оснований - четыре. Таким образом, язык генетических записей четырехбуквенный, и если основание - его «буква», то «слова» - это порядок аминокислот в кодируемых генами белках. Кроме состава белков в геноме (совокупности генов в одинарном наборе хромосом) записаны и другие любопытные сведения. Можно сказать, что Природа (в результате эволюции или Божьего промысла) закодировала в ДНК инструкции о том, как клеткам выживать, реагировать на внешние воздействия, предотвращать «поломки», иными словами, - как развиваться и стареть организму.

Любое нарушение этих инструкций ведет к мутациям, и если они случаются в половых клетках (сперматозоидах или яйцеклетках), мутации передаются следующим поколениям, угрожая существованию данного вида.

Как представить себе 3 млрд. оснований зримо? Чтобы воспроизвести информацию, содержащуюся в ДНК единственной клетки, даже самым мелким шрифтом (как в телефонных справочниках), понадобится тысяча 1000-страничных книг!

Сколько же всего генов, то есть последовательностей нуклеотидов, кодирующих белки, в ДНК человека? Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас специалисты по биоинформатике предполагают, что в геноме человека не более 40 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК клетки, а функциональная роль остальных 97% пока не установлена.

Цель проекта - выяснить последовательности азотистых оснований и положения генов (картирование) в каждой молекуле ДНК каждой клетки человека, что открыло бы причины наследственных заболеваний и пути к их лечению. В проекте заняты тысячи специалистов со всего мира: биологов, химиков, математиков, физиков и техников.

Проект состоит из пяти основных этапов:

Составление карты, на которой помечены гены, отстоящие друг от друга не более, чем на 2 млн. оснований, на языке специалистов, с разрешением 2 Мб (Мегабаза - от английского слова «base» - основание); завершение физических карт каждой хромосомы с разрешением 0,1 Мб; получение карты всего генома в виде набора описанных по отдельности клонов (0,005 Мб); к 2004 г. полное секвенирование ДНК (разрешение 1 основание); нанесение на карту с разрешением в 1 основание всех генов человека (к 2005 г.). Когда эти этапы будут завершены, исследователи определят все функции генов, а также биологические и медицинские применения результатов.

2. Карты хромосом. Подходы к их составлению.

В ходе проекта создают три типа карт хромосом: генетические, физические и секвенсовые (от англ. sequence - последовательность). Выявить все гены, присутствующие в геноме, и установить расстояния между ними - значит локализовать каждый ген в хромосомах. Такие генетические карты помимо инвентаризации генов и указания их положений ответят на исключительно важный вопрос о том, как гены определяют те или иные признаки организма. Ведь многие признаки зависят от нескольких генов, часто расположенных в разных хромосомах, и знание положения каждого из них позволит понять, как происходит дифференцировка (специализация) клеток, органов и тканей, а также успешнее лечить генетические заболевания. В 20-е и 30-е годы, когда создавалась хромосомная теория наследственности, выяснение положения каждого гена привело к тому, что на генетических картах сначала дрозофилы, а затем кукурузы и ряда других видов удалось отметить особые точки, как тогда говорили, «генетические маркеры» хромосом. Анализ их положения в хромосомах помог снабдить генетические карты хромосом человека новыми сведениями. Первые данные о положении отдельных генов появились еще в 60-е годы. С тех пор они множились лавинообразно, и в настоящее время известно положение уже десятков тысяч генов. Три года назад разрешение генетической карты составляло 10 Мб (для некоторых участков - даже 5 Мб).

Другое направление исследований - составление физических карт хромосом. Еще в 60-е годы цитогенетики стали окрашивать хромосомы, чтобы выявить на них особые поперечные полосы. После окрашивания полосы было видно в микроскоп. Между полосами и генами удалось установить соответствие, что позволило изучать хромосомы по-новому. Позже научились «метить» молекулы ДНК (радиоактивными или флуоресцентными метками) и следить за присоединением этих меток к хромосомам, что значительно повысило разрешение их структуры: до 2 Мб, а потом и до 0,1 Мб (при делении клеток). В 70-е годы научились «разрезать» ДНК на участки специальными (рестрикционными) ферментами, распознающими короткие отрезки ДНК, в которых информация записана в виде палиндромов - сочетаний, читаемых одинаково от начала к концу и от конца к началу. Так возникли рестрикционные карты хромосом. Использование современных физических и химических методов и средств улучшило разрешение физических карт в сотни раз.

Наконец, разработка методов секвенирования (изучения точных последовательностей нуклеотидов в ДНК) открыла путь к созданию секвенсовых карт с рекордным на сегодня разрешением (на этих картах будет указано положение всех нуклеотидов в ДНК).

Число хромосом и их длина различны у разных биологических видов. В клетках бактерий всего одна хромосома. Так, размер генома бактерии Mycoplasma genita-lium 0,58 Мб (в нем 470 генов), у бактерии кишечной палочки (Escherichia coli) в геноме 4200 генов (4,2 Мб), у растения Arabi- dopsis thaliana - 25 тыс. генов (100 Мб), у плодовой мушки Droso-phila melanogaster - 10 тыс. генов (120 Мб). В ДНК мыши и человека 50-60 тыс. генов (3000 Мб). Конечно, для составления карт столь разных объектов одни и те же методы неприменимы, поэтому используют два разных по методологии подхода:

В первом делят ДНК на небольшие куски и, изучив их по отдельности, воссоздают всю структуру, Этот подход увенчался успехом при составлении сравнительно простых карт; для более сложных геномов эффективнее второй подход. В этих случаях неразумно делить молекулу ДНК на короткие куски, удобные для детального изучения. Их оказалось бы так много, что путаница в последовательностях была бы неразрешимой. Поэтому, принимаясь за расшифровку, молекулу делят, наоборот, на как можно более длинные куски и сравнивают их в надежде найти общие концевые участки. Если это удается, куски объединяют, после чего процедуру повторяют. С совершенствованием компьютеров и математических методов обработки информации объединенные по такому принципу куски становятся все крупнее, постепенно приближаясь к целой молекуле. Этот подход, в частности, позволил составить генетическую карту 3-й хромосомы дрозофилы. Разработка новых технологий.

Важный аспект проекта «Геном человека» - разработка новых методов исследований. Еще до старта проекта был развит ряд весьма эффективных методов цитогенетических исследований (теперь их называют методами первого поколения). Среди них: создание и применение упомянутых рестрикционных ферментов; получение гибридных молекул, их клонирование и перенос участков ДНК с помощью векторов в клетки-доноры (чаще всего - кишечной палочки или дрожжей); синтез ДНК на матрицах информационной РНК; секвенирование генов; копирование генов с помощью специальных устройств; способы анализа и классификации молекул ДНК по плотности, массе, структуре.

В последние 4-5 лет благодаря проекту «Геном человека» разработаны новые методы (методы второго поколения), в которых почти все процессы полностью автоматизированы. Почему это направление стало центральным? Самая маленькая хромосома клеток человека содержит ДНК длиной 50 Мб, самая большая (хромосома 1) - 250 Мб. До 1996 г. наибольший участок ДНК, выделяемый из хромосом с помощью реактивов, имел длину 0,35 Мб, а на лучшем оборудовании их структура расшифровывалась со скоростью 0,05-0,1 Мб в год при стоимости 1-2 долл. за основание. Иными словами, только на эту работу понадобилось бы примерно 30 тыс. дней (почти век) и 3 млрд. долл.

Совершенствование технологии к 1998 г. повысило производительность до 0,1 Мб в день (36,5 Мб в год) и понизило стоимость до 0,5 долл. за основание. Использование новых электромеханических устройств, которые к тому же потребляют меньше реактивов, позволило уже в 1999 г. ускорить работы еще в 5 раз (к 2003 г. скорость расшифровки до 500 Мб в год) и уменьшить стоимость до 0,25 долл. за основание (для человеческой ДНК еще дешевле).

4. Результаты. Задачи на будущее.

За последние шесть лет созданы международные банки данных о последовательностях нуклеотидов в ДНК разных организмов (GenBank / EMBL / pBJ) и о последовательностях аминокислот в белках (PIR / SwissPot). Любой специалист может воспользоваться собранной там информацией в исследовательских целях. Решение о свободном доступе к информации далось нелегко. Ученые, юристы, законодатели немало потрудились, чтобы воспрепятствовать намерениям коммерческих фирм патентовать все результаты проекта и превратить эту область науки в бизнес.

Расшифрованные геномы.

1995 г. - бактерия Hemophilus influenza;.

1996 г. - клетка дрожжей (6 тыс. генов, 12,5 Мб);

1998 г. - круглый червь Caenorhabditis elegans (19 тыс. генов, 97 Мб).

Основные результаты завершенных этапов проекта изложены в журнале «Science» (1998. Vol. 282, № 5396,. Р. 2012-2042).

Изученные гены человека. За 1995 г. длина участков ДНК человека с установленной последовательностью оснований увеличилась почти в 10 раз. Но хотя прогресс был налицо, результат за год составил менее 0,001% от того, что предстояло сделать. Но уже к июлю 1998 г. было расшифровано почти 9% генома, а затем каждый месяц появлялись новые значительные результаты. Изучив большое число копий генов в виде сДНК и сопоставив их последовательности с участками хромосомной ДНК, к ноябрю 1998 г. расшифровали 30 261 ген (примерно половина генома).

Функции генов. Результаты завершенной части проекта позволяют судить о роли двух третей генов в образовании и функционировании органов и тканей человеческого организма. Оказалось, что больше всего генов нужно для формирования мозга и поддержания его активности, а меньше всего для создания эритроцитов - лишь 8.

Полученные данные позволили впервые реально оценить функции генов в организме человека.

В мире каждый сотый ребенок рождается с каким-либо наследственным дефектом. К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. - наследственные. Уже выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли. Обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др. Вот некоторые болезни, возникающие в результате повреждения генов, структура которых полностью расшифрована:

Хронический грануломатоз; Кистозный фиброз; Болезнь Вильсона; Ранний рак груди/яичника; Мышечная дистрофия Эмери-Дрейфуса; Атрофия мышц позвоночника; Альбинизм глаза; Болезнь Альцгеймера; Наследственный паралич; Дистония.

Другие организмы. Когда составлялась программа исследований по проекту, решили сначала отработать методы на более простых моделях. Поэтому на первом этапе реализации проекта изучили 8 разных представителей мира микроорганизмов, а к концу 1998 г. - уже 18 организмов с размерами генома от 1 до 20 Мб. В их числе представители многих родов бактерий: архебактерии, спирохеты, хламидобактерии, кишечная палочка, возбудители пневмоний, сифилиса, гемофилии, метанобразующие бактерии, микоплазмы, риккетсии, цианобактерии. Как уже упоминалось, завершен генетический анализ одноклеточного эукариота - дрожжей Saccharomy-ces cerevisae и первого многоклеточного животного - червя C. elegans.

Повреждения генов и наследственные болезни. Из 10 тыс. известных заболеваний человека около 3 тыс. - наследственные болезни. Они необязательно наследуются (передаются потомкам). Просто вызваны они нарушениями наследственного аппарата, то есть генов (в том числе в соматических клетках, а не только в половых). Выявление молекулярных причин «поломки» генов - важнейший результат проекта. Число изученных болезнетворных генов быстро растет, и через 3-4 года мы познаем все 3 тыс. генов, ответственных за те или иные патологии. Это поможет разобраться в генетических программах развития и функционирования человеческого организма, в частности, понять причины рака и старения. Знание молекулярных основ заболеваний поможет их ранней диагностике, а значит, и более успешному лечению. Адресное снабжение лекарствами пораженных клеток, замена больных генов здоровыми, управление обменом веществ и многие другие мечты фантастов на наших глазах превращаются в реальные методы современной медицины.

Молекулярные механизмы эволюции. Зная строение геномов, ученые приблизятся к разгадке механизмов эволюции. В частности, такого ее этапа, как деление живых существ на прокариоты и эукариоты. До последнего времени к прокариотам относили архебактерии, по многим признакам отличающиеся от других представителей этой группы микроорганизмов, но также состоящие всего из одной клетки без обособленного ядра, но с молекулой ДНК в виде двойной спирали. Когда год назад геном архебактерий расшифровали, стало ясно, что это отдельная ветвь на эволюционном древе.

Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека. В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объемах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объему купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных и тратят на это десятки миллиардов долларов в год, они же монополизировали выпуск химических веществ для быта, добавок к продукции строительной индустрии и т.п. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок.

С учетом постоянного наращивания темпов работ руководители проекта заявили в конце 1998 г., что проект будет выполнен гораздо раньше, чем планировалось, и сформулировали задачи на ближайшую перспективу:

2001 г. - предварительный анализ генома человека;

2002 г. - расшифровка генома плодовой мухи Drosophila melanogaster;

2003 г. - создание полных карт генома человека;

2005 г. - расшифровка генома мыши с использованием методов сДНК и искусственных хромосом дрожжей.

Помимо этих целей, официально включенных в международный проект, поддерживаемый США и рядом других стран на правительственном уровне, некоторые исследовательские центры объявили о задачах, которые будут решаться в основном за счет грантов и пожертвований. Так, ученые Калифорнийского университета (Беркли), Орегонского университета и Центра Ф. Хатчинсона по исследованию рака начали расшифровку генома собаки.

Главная стратегическая задача на будущее - изучить вариации ДНК (на уровне отдельных нуклеотидов) в разных органах и клетках отдельных индивидуумов и выявить эти различия. Обычно одиночные мутации в ДНК человека встречаются в среднем на тысячу неизмененных оснований. Анализ таких вариаций позволит не только создавать индивидуальные генные портреты и, тем самым, лечить любые болезни, но и определять различия между популяциями и регионы повышенного риска, делать заключения о необходимости первоочередной очистки территорий от тех или иных загрязнений и выявлять производства, опасные для геномов персонала. Впрочем, наряду с радужными ожиданиями всеобщего блага эта грандиозная цель вызывает и вполне осознанную тревогу юристов и борцов за права человека. В частности, высказываются возражения против распространения генетической информации без разрешения тех, кого она касается. Ведь ни для кого не секрет, что уже сегодня страховые компании стремятся добыть такие сведения всеми правдами и неправдами, намереваясь использовать эти данные против тех, кого они страхуют. Компании не желают страховать клиентов с потенциально болезнетворными генами или заламывают за их страховки бешеные суммы. Поэтому конгресс США уже принял ряд законов, направленных на строгий запрет распространения индивидуальной генетической информации.

Какие прогнозы сбудутся: оптимистические или пессимистические - покажет ближайшее будущее...

Заключение.

Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99,99 % человеческой ДНК. Проект не только превзошёл все цели и выработанные ранее стандарты, но и продолжает улучшать уже достигнутые результаты.

Список литературы

Карсон Р., Батчер Дж., Минека С. Анормальная психология. – 11-е изд. – СПб: Питер, 2004. – 1167с.: ил. – (Серия «Мастера психологии»). Кнорре Д.Г. Биохимия нуклеиновых кислот // Соросовский образовательный журнал. 1996г. № 3 стр. 10-11, 1998г. № 8 стр. 30-35. Секач М.Ф. Психология здоровья: учебное пособие для высшей школы. – 2-е изд. – М.: Академический проект: Гаудеамус, 2005. – 192с. – («Gaudeamus»).



Читайте также: