Таблица максимальной абсолютной влажности воздуха. Влажность

Относительная влажность

Относительная влажность определяется отношением (выраженным в процентах) давления водяных паров, находящихся в воздухе, к давлению паров, насыщающих воздух при той же температуре. На практике в большинстве случаев относительная влажность определяется отношением веса водяного пара в единице объема воздуха (абсолютная влажность) к весу насыщенного водяного пара в том же объеме воздуха и при той же температуре.

Весовой гигрометр

В справочной таблице дано количество воды в граммах, содержащихся в 1 м 3 воздуха при насыщении, если общее давление равно 760 мм Hg.

Температура, °С

Аспирационный гигрометр (психрометр)

В метеорологии применяется простое выражение

P w -P=АН (t-t w).

Где t w 0 C обозначает температуру влажного термометра, Р (мм) – давление водяных паров в воздухе, Р w – давление паров, насыщающих воздух при температуре t w , H (мм) – барометрическое давление и А – постоянная. Таким образом, относительная влажность воздуха равна 100 Р/Р s , где Р s обозначает давление насыщенных паров при температуре t, отсчитанной по сухому термометру. Величина А, которая зависит от скорости воздуха около влажного термометра, равна 0,00066 для аспирационного психрометра Ассманна и А=0,00080 для прибора Стевенсона, применяемого в метеорологической службе.

Таблица значения относительной влажности (%) при измерениях с психрометром

Приводимые справочные таблицы относятся к приборам с полной (свободной) вентиляцией. Более полные таблицы для областей температур от – 30 до 55°С и от 30 до 350°С F.

1) Переохлажденная вода (но не лед) на влажном термометре.

Температура по сухому термометру, °С

Разность показаний по сухому и влажному термометрам (психрометрическая разность), °С

Таблица значения относительной влажности - Влажный термометр, покрытый льдом

Температура по сухому термометру, °С

Разность показаний по сухому и влажному термометрам (психрометрическая разность), °С

1) Относительная влажность здесь определяется как отношение абсолютной влажности, рассчитанной на единицу объема, к количеству водяного пара в воздухе, которое находится в равновесии с водой (но не со льдом) при температуре сухого термометра.

Одной из важнейших характеристик сжатого воздуха, используемого в промышленности, пищевой индустрии, медицине и других отраслях, является влажность . В данной статье даётся определение понятия «влажность воздуха », приводятся таблицы по определению точки росы в зависимости от температуры и относительной влажности, значений давления насыщенного пара над поверхность воды и льда, значений абсолютной влажности. А также, таблица поправочных коэффициентов пересчета относительной влажности воздуха, насыщенного относительно воды, в относительную влажность воздуха , насыщенного относительно льда.

Самое общее определение таково: влажность - это мера, характеризующая содержание водяных паров в воздухе (или другом газе). Данное определение, разумеется, не претендует на "наукоемкость", зато дает физическое понятие влажности.

Для количественной оценки "влажности" газов наиболее часто используют следующие характеристики:

  • парциальное давление водяного пара (р) - давление , которое имел бы водяной пар, входящий в состав атмосферного или сжатого воздуха, если бы он один занимал объём, равный объёму воздуха при той же температуре. Общее давление смеси газов равно сумме парциальных давлений отдельных составляющих этой смеси.
  • относительная влажность - определяется как отношение действительной влажности воздуха к его максимально возможной влажности, т. е. относительная влажность показывает, сколько еще влаги не хватает, чтобы при данных условиях окружающей среды началась конденсация. Более «научной» является такая формулировка: относительная влажность это величина определяемая как отношение парциального давления водяного пара (р) к давлению насыщенного пара при данной температуре, выраженное в процентах.
  • температура точки росы (инея), определяется как температура, при которой парциальное давление насыщенного относительно воды (льда) пара равно парциальному давлению водяного пара в характеризуемом газе. Т. е. это температура, при которой начинается процесс конденсации влаги. Практическое значение точки росы заключается в том, что оно показывает, какое максимальное количество влаги может содержаться в воздухе при указанной температуре. Действительно, фактическое количество воды, которое может удерживаться в постоянном объеме воздуха, зависит только от температуры. Понятие точки росы является наиболее удобным техническим параметром. Зная значение точки росы, можно смело утверждать, что количество влаги в заданном объеме воздуха не превысит определенного значения.
  • абсолютная влажность , определяемая как массовое содержание воды в единице объема газа. это величина, показывающая, какое количество паров воды содержится в заданном объеме воздуха, это самое общее понятие, оно выражается в г/м3. При очень низкой влажности газа используется такой параметр как влагосодержание , единица измерения которого ppm (parts per million - частей на миллион). Это абсолютная величина, которая характеризует число молекул воды на миллион молекул всей смеси. Она не зависит ни от температуры, ни от давления. Это и понятно количество молекул воды не может увеличиваться или уменьшаться при изменениях давления и температуры.

Зависимости давления насыщенного пара над плоской поверхностью воды и льда от температуры, полученные теоретически на основании уравнения Клаузиуса - Клапейрона и сверенные с экспериментальными данными многих исследователей, рекомендованы для метеорологической практики Всемирной метеорологической организацией (ВМО):

ln p sw =-6094,4692T -1 +21,1249952-0,027245552 T+0,000016853396T 2 +2,4575506 lnT
ln p si =-5504,4088T -1 - 3,5704628-0,017337458T+ 0,0000065204209T 2 + 6,1295027 lnT,

где p sw - давление насыщенного пара над плоской поверхностью воды (Па);
p si - давление насыщенного пара над плоской поверхностью льда (Па);
Т - температура (К).

Приведенные формулы справедливы для температур от 0 до 100ºC (для p sw) и от -0 до -100ºC (для p si). В то же время ВМО рекомендует первую формулу и для отрицательных температур для переохлажденной воды (до -50ºC).

Очевидно что эти формулы достаточно громоздки и неудобны для практической работы, поэтому в расчётах намного удобнее пользоваться готовыми данными, сведёнными в специальные таблицы. Ниже приведены некоторые из этих таблиц.

Таблица 1. Определения точки росы в зависимости от температуры и относительной влажности воздуха

Температура воздуха Относительная влажность воздуха
30% 35% 40% 45% 50% 55% 60%& 65% 70% 75% 80% 85% 90% 95%
-10°С ;-23,2 -21,8 -20,4 -19,0 -17,8 -16,7 -15,8 -14,9 -14,1 -13,3 -12,6 -11,9 -10,6 -10,0
-5°С -18,9 -17,2 -15,8 -14,5 -13,3 -11,9 -10,9 -10,2 -9,3 -8,8 -8,1 -7,7 -6,5 -5,8
0°С -14,5 -12,8 -11,3 -9,9 -8,7 -7,5 -6,2 -5,3 -4,4 -3,5 -2,8 -2 -1,3 -0,7
+2°С -12,8 -11,0 -9,5 -8,1 -6,8 -5,8 -4,7 -3,6 -2,6 -1,7 -1 -0,2 -0,6 +1,3
+4°С -11,3 -9,5 -7,9 -6,5 -4,9 -4,0 -3,0 -1,9 -1,0 +0,0 +0,8 +1,6 +2,4 +3,2
+5°С -10,5 -8,7 -7,3 -5,7 -4,3 -3,3 -2,2 -1,1 -0,1 +0,7 +1,6 +2,5 +3,3 +4,1
+6°С -9,5 -7,7 -6,0 -4,5 -3,3 -2,3 -1,1 -0,1 +0,8 +1,8 +2,7 +3,6 +4,5 +5,3
+7°С -9,0 -7,2 -5,5 -4,0 -2,8 -1,5 -0,5 +0,7 +1,6 +2,5 +3,4 +4,3 +5,2 +6,1
+8°С -8,2 -6,3 -4,7 -3,3 -2,1 -0,9 +0,3 +1,3 +2,3 +3,4 +4,5 +5,4 +6,2 +7,1
+9°С -7,5 -5,5 -3,9 -2,5 -1,2 +0,0 +1,2 +2,4 +3,4 +4,5 +5,5 +6,4 +7,3 +8,2
+10°С -6,7 -5,2 -3,2 -1,7 -0,3 +0,8 +2,2 +3,2 +4,4 +5,5 +6,4 +7,3 +8,2 +9,1
+11°С -6,0 -4,0 -2,4 -0,9 +0,5 +1,8 +3,0 +4,2 +5,3 +6,3 +7,4 +8,3 +9,2 +10,1
+12°С -4,9 -3,3 -1,6 -0,1 +1,6 +2,8 +4,1 +5,2 +6,3 +7,5 +8,6 +9,5 +10,4 +11,7
+13°С -4,3 -2,5 -0,7 +0,7 +2,2 +3,6 +5,2 +6,4 +7,5 +8,4 +9,5 +10,5 +11,5 +12,3
+14°С -3,7 -1,7 -0,0 +1,5 +3,0 +4,5 +5,8 +7,0 +8,2 +9,3 +10,3 +11,2 +12,1 +13,1
+15°С -2,9 -1,0 +0,8 +2,4 +4,0 +5,5 +6,7 +8,0 +9,2 +10,2 +11,2 +12,2 +13,1 +14,1
+16°С -2,1 -0,1 +1,5 +3,2 +5,0 +6,3 +7,6 +9,0 +10,2 +11,3 +12,2 +13,2 +14,2 +15,1
+17°С -1,3 +0,6 +2,5 +4,3 +5,9 +7,2 +8,8 +10,0 +11,2 +12,2 +13,5 +14,3 +15,2 +16,6
+18°С -0,5 +1,5 +3,2 +5,3 +6,8 +8,2 +9,6 +11,0 +12,2 +13,2 +14,2 +15,3 +16,2 +17,1
+19°С +0,3 +2,2 +4,2 +6,0 +7,7 +9,2 +10,5 +11,7 +13,0 +14,2 +15,2 +16,3 +17,2 +18,1
+20°С +1,0 +3,1 +5,2 +7,0 +8,7 +10,2 +11,5 +12,8 +14,0 +15,2 +16,2 +17,2 +18,1 +19,1
+21°С +1,8 +4,0 +6,0 +7,9 +9,5 +11,1 +12,4 +13,5 +15,0 +16,2 +17,2 +18,1 +19,1 +20,0
+22°С +2,5 +5,0 +6,9 +8,8 +10,5 +11,9 +13,5 +14,8 +16,0 +17,0 +18,0 +19,0 +20,0 +21,0
+23°С +3,5 +5,7 +7,8 +9,8 +11,5 +12,9 +14,3 +15,7 +16,9 +18,1 +19,1 +20,0 +21,0 +22,0
+24°С +4,3 +6,7 +8,8 +10,8 +12,3 +13,8 +15,3 +16,5 +17,8 +19,0 +20,1 +21,1 +22,0 +23,0
+25°С +5,2 +7,5 +9,7 +11,5 +13,1 +14,7 +16,2 +17,5 +18,8 +20,0 +21,1 +22,1 +23,0 +24,0
+26°С +6,0 +8,5 +10,6 +12,4 +14,2 +15,8 +17,2 +18,5 +19,8 +21,0 +22,2 +23,1 +24,1 +25,1
+27°С +6,9 +9,5 +11,4 +13,3 +15,2 +16,5 +18,1 +19,5 +20,7 +21,9 +23,1 +24,1 +25,0 +26,1
+28°С +7,7 +10,2 +12,2 +14,2 +16,0 +17,5 +19,0 +20,5 +21,7 +22,8 +24,0 +25,1 +26,1 +27,0
+29°С +8,7 +11,1 +13,1 +15,1 +16,8 +18,5 +19,9 +21,3 +22,5 +24,1 +25,0 +26,0 +27,0 +28,0
+30°С +9,5 +11,8 +13,9 +16,0 +17,7 +19,7 +21,3 +22,5 +23,8 +25,0 +26,1 +27,1 +28,1 +29,0
+32°С +11,2 +13,8 +16,0 +17,9 +19,7 +21,4 +22,8 +24,3 +25,6 +26,7 +28,0 +29,2 +30,2 +31,1
+34°С +12,5 +15,2 +17,2 +19,2 +21,4 +22,8 +24,2 +25,7 +27,0 +28,3 +29,4 +31,1 +31,9 +33,0
+36°С +14,6 +17,1 +19,4 +21,5 +23,2 +25,0 +26,3 +28,0 +29,3 +30,7 +31,8 +32,8 +34,0 +35,1
+38°С +16,3 +18,8 +21,3 +23,4 +25,1 +26,7 +28,3 +29,9 +31,2 +32,3 +33,5 +34,6 +35,7 +36,9
+40°С +17,9 +20,6 + 22,6 +25,0 +26,9 +28,7 +30,3 +31,7 +33,0 +34,3 +35,6 +36,8 +38,0 +39,0

Таблица 2. Значения давления насыщенного пара над плоской поверхностью воды (p sw) и льда (p si).

Т, °C p sw , Па p si , Па Т, °C p sw , Па p si , Па Т, °C p sw , Па p si , Па
-50 6,453 3,924 -33 38,38 27,65 -16 176,37 150,58
-49 7,225 4,438 -32 42,26 30,76 -15 191,59 165,22
-48 8,082 5,013 -31 46,50 34,18 -14 207,98 181,14
-47 9,030 5,657 -30 51,11 37,94 -13 225,61 198,45
-46 10,08 6,38 -29 56,13 42,09 -12 244,56 217,27
-45 11,24 7,18 -28 61,59 46,65 -11 264,93 237,71
-44 12,52 8,08 -27 67,53 51,66 -10 286,79 259,89
-43 13,93 9,08 -26 73,97 57,16 -9 310,25 283,94
-42 15,48 10,19 -25 80,97 63,20 -8 335,41 310,02
-41 17,19 11,43 -24 88,56 69,81 -7 362,37 338,26
-40 19,07 12,81 -23 96,78 77,06 -6 391,25 368,84
-39 21,13 14,34 -22 105,69 85,00 -5 422,15 401,92
-38 23,40 16,03 -21 115,32 93,67 -4 455,21 437,68
-37 25,88 17,91 -20 125,74 103,16 -3 490,55 476,32
-36 28,60 19,99 -19 136,99 113,52 -2 528,31 518,05
-35 31,57 22,30 -18 149,14 124,82 -1 568,62 563,09
-34 34,83 24,84 -17 162,24 137,15 0 611,65 611,66

Таблица 3. Значения давления насыщенного пара над плоской поверхностью воды (p sw).

Т, °C p sw , Па Т, °C p sw , Па Т, °C p sw , Па Т, °C p sw , Па
0 611,65 26 3364,5 52 13629,5 78 43684,4
1 657,5 27 3568,7 53 14310,3 79 45507,1
2 706,4 28 3783,7 54 15020,0 80 47393,4
3 758,5 29 4009,8 55 15759,6 81 49344,8
4 814,0 30 4247,6 56 16530,0 82 51363,3
5 873,1 31 4497,5 57 17332,4 83 53450,5
6 935,9 32 4760,1 58 18167,8 84 55608,3
7 1002,6 33 5036,0 59 19037,3 85 57838,6
8 1073,5 34 5325,6 60 19942,0 86 60143,3
9 1148,8 35 5629,5 61 20883,1 87 62524,2
10 1228,7 36 5948,3 62 21861,6 88 64983,4
11 1313,5 37 6282,6 63 22878,9 89 67522,9
12 1403,4 38 6633,1 64 23936,1 90 70144,7
13 1498,7 39 7000,4 65 25034,6 91 72850,8
14 1599,6 40 7385,1 66 26175,4 92 75643,4
15 1706,4 41 7787,9 67 27360,1 93 78524,6
16 1819,4 42 8209,5 68 28589,9 94 81496,5
17 1939,0 43 8650,7 69 29866,2 95 84561,4
18 2065,4 44 9112,1 70 31190,3 96 87721,5
19 2198,9 45 9594,6 71 32563,8 97 90979,0
20 2340,0 46 10098,9 72 33988,0 98 94336,4
21 2488,9 47 10625,8 73 35464,5 99 97795,8
22 2646,0 48 11176,2 74 36994,7 100 101359,8
23 2811,7 49 11750,9 75 38580,2
24 2986,4 50 12350,7 76 40222,5
25 3170,6 51 12976,6 77 41923,4

Таблица 4. Значения абсолютной влажности газа с относительной влажностью по воде 100% при различных температурах.

Т,°С А,г/м 3 Т,°С А,г/м 3 Т,°С А,г/м 3 Т,°С А,г/м 3
-50 0,063 -10 2,361 30 30,36 70 196,94
-49 0,070 -9 2,545 31 32,04 71 205,02
-48 0,078 -8 2,741 32 33,80 72 213,37
-47 0,087 -7 2,950 33 35,64 73 221,99
-46 0,096 -6 3,173 34 37,57 74 230,90
-45 0,107 -5 3,411 35 39,58 75 240,11
-44 0,118 -4 3,665 36 41,69 76 249,61
-43 0,131 -3 3,934 37 43,89 77 259,42
-42 0,145 -2 4,222 38 46,19 78 269,55
-41 0,160 -1 4,527 39 48,59 79 280,00
-40 0,177 0 4,852 40 51,10 80 290,78
-39 0,196 1 5,197 41 53,71 81 301,90
-38 0,216 2 5,563 42 56,44 82 313,36
-37 0,237 3 5,952 43 59,29 83 325,18
-36 0,261 4 6,364 44 62,25 84 337,36
-35 0,287 5 6,801 45 65,34 85 349,91
-34 0,316 6 7,264 46 68,56 86 362,84
-33 0,346 7 7,754 47 71,91 87 376,16
-32 0,380 8 8,273 48 75,40 88 389,87
-31 0,416 9 8,822 49 79,03 89 403,99
-30 0,455 10 9,403 50 82,81 90 418,52
-29 0,498 11 10,02 51 86,74 91 433,47
-28 0,544 12 10,66 52 90,82 92 448,86
-27 0,594 13 11,35 53 95,07 93 464,68
-26 0,649 14 12,07 54 99,48 94 480,95
-25 0,707 15 12,83 55 104,06 95 497,68
-24 0,770 16 13,63 56 108,81 96 514,88
-23 0,838 17 14,48 57 113,75 97 532,56
-22 0,912 18 15,37 58 118,87 98 550,73
-21 0,991 19 16,31 59 124,19 99 569,39
-20 1,076 20 17,30 60 129,70 100 588,56
-19 1,168 21 18,33 61 135,41
-18 1,266 22 19,42 62 141,33
-17 1,372 23 20,57 63 147,47
-16 1,486 24 21,78 64 153,83
-15 1,608 25 23,04 65 160,41
-14 1,739 26 24,37 66 167,23
-13 1,879 27 25,76 67 174,28
-12 2,029 28 27,22 68 181,58
-11 2,190 29 28,75 69 189,13

Приведём пример использования вышеприведённых таблиц в практической деятельности: производительностью 10 м 3 /мин "всасывает" в минуту 10 кубических метров атмосферного воздуха.

Найдём количество воды содержащееся в 10 кубических метрах атмосферного воздуха с параметрами температура +25 °С, относительная влажность 85%. Согласно таблице 4, в воздухе с температурой +25 °С и стопроцентной влажности содержится 23,04 г/м 3 воды. Значит при 85%-ной влажности в одном кубическом метре воздуха будет содержаться 0,85*23,04=19,584 г. воды, а в десяти - 195,84 г.

В процессе компримирования воздуха объём, занимаемый им, будет уменьшаться. Уменьшенный объем сжатого воздуха при давлении 6 бар можно подсчитать, исходя из закона Бойля -Мариотта (температура воздуха существенно не изменяется):

P1 x V1 = P2 x V2

V2 = (P1 x V1) / P2

где Р1 - атмосферное давление равное 1,013 бар;
V2 = (1,013бар х 10 м 3)/ (6+1,013)бар = 1,44 м 3 .

То есть, 10 кубических метров атмосферного воздуха, в процессе сжатия, "превратились" в 1,44 м 3 сжатого воздуха, с избыточным давлением 6 бар, на выходе из компрессора.

Психрометрическая таблица, температура и влажность воздуха, атмосферное давление

Подготовил Е.Цимеринов

Температура и влажность воздуха. Атмосферное давление.

Количество водяного пара, находящегося в воздухе, называется влажностью воздуха. Для характеристики влажности употребляются следующие величины:
1. Абсолютная влажность.
2. Относительная влажность.
Количество водяного пара, содержащегося в 1 м 3 воздуха называется абсолютной влажностью и измеряется или в весовых единицах (граммах), или выражается упругостью пара в миллиметрах (или миллибарах) ртутного столба. Относительная влажность представляет собой отношение упругости водяного пара, насыщающего пространство, к максимально возможной упругости водяного пара при данной температуре. Относительная влажность выражается в процентах. Для определения влажности воздуха метеорологи пользуются психрометром и волосяным гигрометром. Психрометр служит для измерения температуры и влажности воздуха. Психрометр состоит из двух термометров. Резервуар правого термометра обернут тканью. Левый термометр (сухой) служит для измерения температуры воздуха. Отсчет по правому (смоченному) термометру в соединении с отсчетами по сухому термометру служат для вычисления абсолютной и относительной влажности воздуха. Лоскуток ткани, охватывающий шарик термометра, должен быть всегда чистым. Если он загрязнился, его необходимо заменить новым. Менять его следует, возможно, чаще: при постоянной работе не реже, чем раз в две недели. Вблизи прибора не должно быть никаких посторонних предметов, которые, имея температуру, отличную от температуры воздуха, могут повлиять на показания прибора. Прибор следует устанавливать в тени.

Порядок наблюдений по психрометру:
1. За 5 минут до срочного часа смачивают ткань на термометре. Для этого берут дистиллированную воду. За неимением таковой можно пользоваться чистой снеговой водой или использовать дождевую воду, предварительно пропущенную через фильтровальную бумагу или вату.
2. Через 4 минуты производят отсчет сухого и смоченного термометров психрометра.

Наблюдения по психрометру при температуре воздуха около нуля имеют следующие особенности:
1. Ткань в этом случае смачивают за 30 минут до наступления срока наблюдения.
2. После отсчета термометров определяется состояние ткани – «лед» или «вода». Для этой цели неотточенным концом карандаша или тонкой деревянной палочкой осторожно касаются лоскутка ткани на смоченном термометре и в зависимости от того, мягкая или твердая ткань, отмечают «в» или «л».

Волосяной гигрометр. Волосяной гигрометр предназначен для измерения относительной влажности воздуха. Действие прибора основано на свойстве обезжиренного человеческого волоса менять свою длину в зависимости от изменения относительной влажности окружающего воздуха. Основное назначение волосяного гигрометра – измерять влажность в морозное время, когда по психрометру влажность не определяется. Но так как отсчет по гигрометру требуют поправок, получаемых из сравнения с психрометром, то для вывода этих поправок наблюдения по гигрометру ведут на протяжении всего года. Если при отсчете окажется, что конец стрелки вышел за сотое деление, то нужно оценить на глаз, на каком делении оказалась бы стрелка, если бы шкала была продолжена на 110. Считая, что расстояние от 100 до 110 равно имеющемуся на шкале расстоянию от 90 до 100 и записать этот «экстраполированный» отсчет с вопросительным знаком (?). Температура воздуха отсчитывается по сухому термометру психрометра.

Атмосферное давление воздуха.

Атмосфера подчиняется закону силы тяжести и оказывает давление на поверхность земли, т.е. на всякий предмет, находящийся на земле или в атмосфере, а так же и на массы воздуха. Это давление атмосферы или давление воздуха. На уровне моря атмосферное давление в среднем равно давлению ртутного столба высотой в 760 мм. Давлению в 1 мм. рт. ст. (миллиметр ртутного столба) равно 1,333 мб. (миллибар), следовательно, 1 мб. составляет около 0,75 мм. рт. ст.

Барометр анероид служит для измерения давления воздуха. В циферблат анероида вмонтирован термометр для отсчета температуры прибора.
1. Для наблюдений следует отсчитать показание термометра.
2. Затем устранить влияние трения в передаточном механизме на положение стрелки, слегка постукивая пальцем по стеклу анероида.
3. Отсчитать положение стрелки анероида "на глаз".
При отсчете показаний анероида необходимо во избежание ошибки от так называемого «параллакса» держать глаз в плоскости перпендикулярной к циферблату и проходящей через ось стрелки. Полученное давление воздуха должно быть приведено к одному уровню - уровню моря. Для этой операции необходимо к отсчету барометра, исправленного всеми поправками, прибавить еще вес столба воздуха. Высота этого столба равна высоте пункта наблюдения над уровнем моря.

На данном уроке, тема которого: «Влажность. Измерение влажности», мы обсудим свойства насыщенного и ненасыщенного водяного пара, который всегда присутствует в атмосфере.

На предыдущем уроке мы с вами познакомились с понятием «насыщенный пар». Как при изучении любых тем и предметов, может возникнуть вопрос: «Где же мы пользуемся этим понятием, как мы его будем применять?». Самое важное применение свойств насыщенного пара мы и обсудим на данном уроке.

Название темы наверняка вам хорошо известно, ведь понятие «влажность воздуха» вы каждый день слышите, когда смотрите или слушаете прогноз погоды. Однако если вас спросят: «Что же понимается под влажностью воздуха?», вы вряд ли сразу дадите точное физическое определение.

Попробуем сформулировать, что же в физике понимается под влажностью воздуха. Прежде всего, что это за вода содержится в воздухе? Ведь таковой, например, является туман, дождь, облака и прочие атмосферные явления, проходящие с участием воды в том или ином агрегатном состоянии. Если все эти явления учитывать при описании влажности, то как же проводить измерения? Уже из таких простых рассуждений становится ясно, что интуитивными определениями здесь не обойтись. На самом деле, речь идет прежде всего о парах воды, которые содержатся в нашей атмосфере.

Атмосферный воздух является смесью газов, одним из которых и является водяной пар (рис. 1). Он вносит свой вклад в атмосферное давление, этот вклад называется парциальным давлением (а также упругостью) водяных паров.

Рис. 1. Составляющие атмосферного воздуха

Закон Дальтона

Основные закономерности, которые мы с вами получали в рамках изучения молекулярно-кинетической теории, относятся к так называемым чистым газам, т. е. газам, состоящим из атомов или молекул одного сорта. Однако очень часто приходится иметь дело со смесью газов. Самым простым и распространенным примером такой смеси является атмосферный воздух, который окружает нас. Как мы знаем, он на 78 % состоит из азота, на 21 % с лишним - из кислорода, а оставшийся процент занимают водяные пары и другие газы.

Рис. 2. Состав атмосферного воздуха

Каждый из газов, который входит в состав воздуха или любой другой смеси газов, безусловно, вносит свой вклад в общее давление данной смеси газов. Вклад каждого отдельного такого компонента носит название парциальное давление газа ,т. е. то давление, которое оказывал бы данный газ в отсутствии других компонент смеси.

Английский химик Джон Дальтон экспериментальным путем установил, что для разреженных газовых смесей общее давление есть простая сумма парциальных давлений всех компонент смеси:

Данное соотношение носит название закона Дальтона.

Доказательство закона Дальтона в рамках молекулярно-кинетической теории хотя и не особо сложное, однако достаточно громоздкое, поэтому приводить здесь мы его не будем. Качественно же объяснять этот закон достаточно просто, если учесть тот факт, что мы пренебрегаем взаимодействием между молекулами, т. е. молекулы представляют собой упругие шары, которые могут только сталкиваться друг с другом и со стенками сосуда. На практике модель идеального газа хорошо работает лишь для достаточно разреженных систем. В случае же плотных газов будут наблюдаться отклонения от выполнения закона Дальтона.

Парциальное давление p водяных паров является одним из показателей влажности воздуха, который измеряется в паскалях или миллиметрах ртутного столба.

Давление водяного пара зависит от концентрации его молекул в воздухе, а также от абсолютной температуры последнего. Чаще за характеристику влажности принимают плотность ρ водяного пара, содержащегося в воздухе, она называется абсолютной влажностью.

Абсолютная влажность показывает, сколько граммов водяного пара содержится в воздуха. Соответственно, единица измерения абсолютной влажности - .

Оба упомянутых показателя влажности связаны уравнением Менделеева-Клапейрона:

- молярная масса водяного пара;

- его абсолютная температура.

То есть, зная один из показателей, например плотность, мы можем легко определить другой, то есть давление.

Мы с вами знаем, что водяной пар может быть как ненасыщенным, так и насыщенным. Пар, находящийся в термодинамическом равновесии с жидкостью того же состава, называется насыщенным. Ненасыщенный пар - пар, не достигший динамического равновесия со своей жидкостью. В этом случае равновесие между процессами конденсации и испарения отсутствуют.

В целом водяной пар в атмосфере, несмотря на наличие большого количества водоемов: океанов, морей, рек, озер и так далее - является ненасыщенным, ведь наша атмосфера не закрытый сосуд. Однако перемещение воздушных масс: ветра, ураганы и так далее - приводят к тому, что в разных точках Земли в каждый момент времени наблюдается разное соотношение между скоростями конденсации и испарением воды, вследствие чего в отдельных местах пар может достигать насыщения. К чему это приводит? К тому, что в такой местности пар начинает конденсироваться, ведь мы помним, что насыщенный пар всегда контактирует со своей жидкостью. Как результат, может образоваться туман или облака, выпасть роса. Температура, при которой пар становится насыщенным, называется точкой росы. Давление водяного пара (насыщенного) в точке росы обозначим .

Подумайте, почему роса, как правило, выпадает ранним утром? Что в этот момент суток происходит с температурой, а следовательно, и с предельным давлением, с давлением насыщенного пара? Очевидно, что знание абсолютной влажности или парциального давления водяного пара не дает нам никакого представления о том, насколько близок или далек данный пар от насыщения. А ведь именно от этой удаленности или близости к насыщению и зависит скорость процессов испарения и конденсации, т. е. тех процессов, которые и обуславливают жизнедеятельность живых организмов.

Если испарение превалирует над конденсацией, то организмы и почва теряют влагу (рис. 3). Если превалирует конденсация, то становятся невозможными процессы сушки (рис. 4).Перед нами стоит необходимость усовершенствовать понятие влажности; понятие абсолютной влажности, как мы только что убедились, не полностью описывает все необходимые нам явления.

Рис. 3. Испарение превалирует над конденсацией

Рис. 4. Конденсация превалирует над испарением

Еще раз обсудим проблематику. Сделаем это на простом примере. Представьте себе, что в некотором транспортном средстве находится 20 человек. Много это или мало, т. е. вот эта абсолютная величина 20 человек? Естественно, что мы не сможем сказать, много это или мало, до тех пор пока не будем знать максимальную вместимость данного автомобиля или транспортного средства. 20 человек в легковой машине - это, естественно, много, это фактически невозможно, а 20 человек в большом автобусе не так уж и много. Аналогично и в случае с абсолютной влажностью, т. е. с парциальным давлением водяного пара, нам необходимо его с чем-то сравнивать. С чем же сравнивать это парциальное давление? Ответ нам подсказывает прошлый урок. Какое важное, особое значение есть у давления водяного пара? Это давление насыщенного водяного пара. Если мы будем сравнивать парциальное давление водяного пара при данной температуре с давлением насыщенного водяного пара при этой же температуре, мы сможем точнее охарактеризовать ту самую влажность воздуха. Чтобы охарактеризовать удаленность состояния пара от насыщения, ввели специальную величину, называемую относительной влажностью .

Относительной влажностью воздуха называют выраженное в процентах отношение давления водяного пара, содержащегося в воздухе, к давлению насыщенного пара при той же температуре:

Теперь ясно, что чем меньше относительная влажность, тем дальше тот или иной пар от насыщения. Так, например, если значение относительной влажности равно 0, то фактически водяного пара в воздухе нет. Т. е. у нас невозможна конденсация, а при значении относительной влажности 100 % весь водяной пар, который находится в воздухе, является насыщенным, т. к. его давление равно как раз давлению насыщенного водяного пара при данной температуре. Вот таким вот способом мы теперь точно определили, что же такое та самая влажность, значение которой нам каждый раз сообщают в прогнозах погоды.

Воспользовавшись уравнением Менделеева-Клапейрона, мы можем получить для относительной влажности альтернативную формулу, в которую входит теперь значение плотности водяного пара, содержащегося в воздухе, и плотность насыщенного пара при той же температуре.

Давление и плотность пара;

Давление и плотность насыщенного пара при данной температуре ;

Универсальная газовая постоянная.

Формула относительной влажности:

Плотность водяного пара, содержащегося в воздухе;

Плотность насыщенного пара при той же температуре.

Влияние интенсивности испарения и конденсации воды на живые организмы

Люди очень восприимчивы к значению относительной влажности, от нее зависит интенсивность испарения влаги с поверхности кожи. При высокой влажности, особенно в жаркий день, это испарение уменьшается, вследствие чего нарушается нормальный теплообмен организма с окружающей средой. В сухом воздухе, наоборот, происходит быстрое испарение влаги с поверхности кожи, от чего высыхают, например, слизистые оболочки дыхательных путей. Наиболее благоприятной для человека является относительная влажность в интервале 40-60 %.

Важна также роль водяного пара в формировании погодных условий. Конденсация водяного пара приводит к образованию облаков и последующему выпадению осадков, что, безусловно, имеет значение для любых аспектов нашей жизни и для народного хозяйства. Во многих производственных процессах поддерживаются искусственные режимы влажности. Примером таких процессов являются ткацкие, кондитерские, фармацевтические цеха и многие другие. В библиотеках и музеях для сохранения книг и экспонатов также важно поддерживать определенное значение относительной влажности, поэтому в таких учреждениях во всех помещениях обязательно на стене висит психрометр - прибор для измерения относительной влажности.

Для расчета относительной влажности, как мы только что убедились, нам необходимо знать значение давления или плотности насыщенного пара при данной температуре.

На прошлом уроке, изучая насыщенный пар, мы говорили об этой зависимости, однако ее аналитический вид весьма сложен, наших математических знаний еще не достаточно. Как же быть в этом случае? Выход очень прост: вместо записи этих формул в аналитическом виде, мы будем пользоваться таблицами значения давления и плотности насыщенного пара при данной температуре (табл. 1). Эти таблицы есть как в учебниках, так и в любом справочнике технических величин.

Табл. 1. Зависимость давления и плотности насыщенного водяного пара от температуры

Теперь рассмотрим изменение относительной влажности с температурой. Чем выше температура, тем меньше относительная влажность. Почему и как, рассмотрим на примере задачи.

Задача

В некотором сосуде пар становится насыщенным при . Какова будет его относительная влажность при , , ?

Поскольку речь идет о паре в сосуде, то объем пара остается неизменным при изменении температуры. Кроме этого, нам необходима таблица зависимости давления и плотности насыщенного пара от температуры (табл. 2).

Табл. 2. Зависимости давления и плотности насыщенного пара от температуры

Решение:

Из текста вопроса ясно, что при , , ведь именно при этом значении пар становится насыщенным, т. е. из определения относительной влажности мы имеем:

В числителе стоит плотность имеющегося в сосуде водяного пара, а в знаменателе находится плотность отсутствующего в сосуде насыщенного пара при той же температуре. Что будет происходить с величиной влажности при увеличении температуры? Числитель, с учетом замкнутости сосуда, изменяться не будет. Действительно, поскольку не происходит конденсации и нет обмена веществом с внешним миром, то масса пара, а вместе с ней и его плотность, сохранят свои значения. А знаменатель, как мы знаем из прошлого урока, растет с температурой, поэтому относительная влажность будет уменьшаться. Плотность пара в сосуде при можно вычислить из приведенной формулы:

Эту же плотность пар будет иметь и при всех остальных температурах. Следовательно, для вычисления влажности нам будет достаточно знать значение плотности насыщенного пара при всех заданных температурах, и мы сразу можем получить ответы. Значение плотности насыщенного пара возьмем из таблицы. Подставляя поочередно значения в формулу для влажности, получим такие ответы:

Ответ:

Пример решения типичной задачи на определение относительной влажности

При решении таких задач важно знать, что давление насыщенного пара зависит от температуры, но не зависит от объема.

Условие задачи:

В сосуде находится воздух, относительная влажность которого при температуре равна . Какой будет относительная влажность после уменьшения объема сосуда в n раз (n = 3) и нагревания газа до температуры ? Плотность насыщенных водяных паров при температуре равна .

Ход решения:

Из определения относительной влажности мы можем записать, что при температуре абсолютная влажность, до сжатия, равна:

А после сжатия:

То есть при уменьшении объема в раз при постоянной массе плотность увеличивается в раз.

После сжатия масса влаги, приходящаяся на единицу объема сосуда, не только в виде паров, но и в виде сконденсировавшееся жидкости, если возникли условия для конденсации, будет равна:

При температуре давление насыщенных водяных паров равно нормальному атмосферному давлению, мы об этом говорили на прошлом уроке, и составляет:

А их плотность, если воспользоваться уравнением Менделеева-Клапейрона, может быть рассчитана по формуле:

Где , т. к. в сосуде будет ненасыщенный пар с относительной влажностью:

Выражая эту влажность в процентах, мы получим значение 2,9 %.

Ответ: .

А теперь поговорим не только о том, что такое влажность, но и о том, как эту самую влажность можно измерять. Наиболее распространенным инструментом для таких измерений служит так называемый гигрометрический психрометр, который представлен на рис. 5.

Рис. 5. Гигрометрический психрометр

На стойке закреплены два термометра с одинаковыми шкалами. Ртутный резервуар одного из них обвернут во влажную тряпочку (рис. 8).

Рис. 6. Термометры гигрометрического психрометра

Вода с этой тряпочки испаряется, благодаря чему сам термометр охлаждается, соответственно, термометры носят название сухой и влажный (рис. 7).

Рис. 7. Сухой и влажный термометры гигрометрического психрометра

Чем больше относительная влажность окружающего воздуха, тем менее интенсивно, слабее идет испарение воды с влажной тряпочки, тем меньше разность в показаниях сухого и влажного термометров. Т. е. при ϕ = 100 % вода не будет испаряться, т. к. весь водяной пар является насыщенным, и показания обоих термометров будут совпадать. При разность показаний термометров будет максимальной. Таким образом, по разности показаний термометров с помощью специальных психометрических таблиц (чаще всего такая таблица сразу размещена на корпусе самого прибора) и определяют значение относительной влажности.

Как мы знаем, большая часть поверхности нашей планеты покрыта Мировым океаном, поэтому вода и все процессы, происходящие с ней, в частности испарение и конденсация, играют важнейшую роль во всех процессах нашей жизнедеятельности. Мы сами дали строгое определение понятий «абсолютная влажность» и «относительная влажность». Фактически это физическая величина, относительная влажность показывает, на сколько атмосферный пар отличается от насыщенного.

Список литературы

  1. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  2. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  1. Интернет-портал WorldOfSchool.ru ()
  2. Интернет-портал «Физика. Старые учебники» ()

Домашнее задание

  1. Чем отличаются абсолютная влажность и относительная влажность?
  2. Что можно измерить с помощью гигрометра психрометрического и каков его принцип действия?
  3. Из каких парциальных давлений складывается атмосферное давление?


Читайте также: